К основному контенту

Хемилюминесцентный анализ

 

В ходе химического процесса возможно превращение части химической энергии в энергию возбуждения продуктов реакции. Излучательная дезактивация образовавшихся возбужденных частиц называется хемилюминесценцией. Хемилюминесценция может возникать и непосредственно в элементарных актах химического процесса без промежуточного образования возбужденных частиц. Общим для всех хемилюминесцентных реакций является наличие экзотермических элементарных актов, в которых выделяется количество энергии, достаточное для возбуждения свечения в области спектральной чувствительности применяемого приемника излучения. Для возбуждения хемилюминесценции в видимой области спектра требуется энергия ≥ 160 кДж/моль. Экзотермические акты со столь большой энергией наблюдаются главным образом в радикальных, цепных, а также в окислительно-восстановительных реакциях, протекающих по свободно-радикальному механизму. Хемилюминесценцию можно рассматривать как двухстадийный процесс, включающий возбуждение

 

А

+

В

Р*

+

Р

Реагирующие компоненты

 

Продукт в возбужденном состоянии

 

Другие продукты

 

и излучение



Интенсивность хемилюминесценции Icl равна



где jex, jfl, - квантовый выход соответственно возбуждения хемилюминесценции и люминесценции продукта реакции Р*; u - скорость реакции. Неорганический хемилюминесцентный анализ основан на способности элементов с незаполненной d-оболочкой тушить флуоресценцию (уменьшать jfl), катализировать (реже - ингибировать) хемилюминесцентную реакцию (увеличивать или уменьшать ее скорость u). Изменение интенсивности при этом пропорционально концентрации элементов. На практике чаще используют реакции окисления люминола или люцигенина (реже лофина и силоксена) пероксидом водорода в щелочной среде.

Для регистрации хемилюминесценции не нужен монохроматор (спектр хемилюминесценции в соответствии с реакциями не зависит от природы металла) и, что самое главное, не требуется внешний источник возбуждения излучения. Современные фотоэлектронные умножители позволяют регистрировать излучение с квантовым выходом до 10-15. Нулевой характер измерения (отсутствие сигнала в контрольном опыте) делает хемилюминесцентный анализ очень чувствительным. Разработаны методики определения платиновых металлов, Fe, Co, Ni, Cu, Cr и других d-металлов с пределами обнаружения до 10-5 мкг/мл. Но эти методики, как правило, не обладают высокой селективностью. Большей селективностью при высокой чувствительности (пределы обнаружения до 10-4 мг/м3) обладают хемилюминесцентные методики газового анализа: определение озона, оксидов азота и аммиака после их перевода в оксид NO.

Реакции


в газовой фазе сопровождаются достаточно интенсивной хемилюминесценцией (квантовый выход ~0,1) с максимумом при 800 нм.

Хемилюминесцентные свойства люминола проявляются в присутствии окислителей. Для этой цели может быть использован пероксид водорода (H2O2) в растворе щёлочи. В присутствии катализаторов, таких как соли железа (например, красная кровяная соль), пероксид водорода разлагается с образованием кислорода и воды. При взаимодействии люминола с гидроксид-ионами образуется дианион, который взаимодействует с кислородом. Продуктом этой реакции является крайне нестабильный органический дирадикал, который моментально распадается с образованием азота и молекулы 3-аминофталевой кислоты в возбуждённом электронном состоянии. При возвращении молекулы из возбуждённого в основное электронное состояние испускается фотон.





Комментарии

  1. Спасибо вам за старательность, честный и эффективный труд.

    ОтветитьУдалить
  2. Сердце мое тронуто и наполнено теплым чувством благодарности!

    ОтветитьУдалить

Отправить комментарий

Популярные сообщения из этого блога

Основное отличие - флуоресценция против люминесценции

  Основное отличие - флуоресценция против люминесценции Флуоресценция  и  люминесценция  описывают процессы, в которых материалы испускают фотоны без излучения, вызванного теплом.  Основное различие  между флуоресценцией и люминесценцией состоит в том, что  люминесценция описывает  любой  процесс, в котором фотоны испускаются без тепла, являющегося причиной , тогда как  флуоресценция, по сути, представляет собой  тип  люминесценции, когда фотон изначально поглощается, что приводит к тому, что атом находится в возбужденном состоянии. синглетное состояние  . Когда электрон возвращается в основное состояние, испускается фотон с более низкой энергией. Что такое свечение Люминесценция относится к излучению света от материалов, которое не вызвано теплом. Вещество, которое светится при повышении температуры (например, полоса металлов, раскаленных докрасна), следовательно, не проявляет свечения. Свет излучается, когда электрон в в...

Тушение люминесценции

  Интенсивность люминесценции и концентрация люминофора Если интенсивность люминесценции характеризовать числом квантов, испускаемых люминофором в единице объема в единицу времени, то в соответствии с основным законом поглощения и определением квантового выхода люминесценции зависимость интенсивности люминесценции I от концентрации люминофора С в растворе выражается уравнением I = j K / I 0 (1- T ) = j K / I 0 (1-10 - klC ) где j K — квантовый выход; I 0 — мощность возбуждающего излучения (число возбуждающих квантов, действующих на единицу объема раствора люминофора в единицу времени); T — пропускание люминофора при длине волны возбуждающего излучения; k — коэффициент поглощения люминофора при длине возбуждающего излучения; l — толщина слоя раствора. Если доля поглощенного люминофором возбуждающего излучения мала (klС << 0,05), формула упрощается: I = 2.303 j K I 0 klC Таким образом, интенсивность люминесценции пропорциональна квантовому выходу люминесцен...

Аппаратура и техника молекулярного люминесцентного анализа

Под спектральным прибором понимают устройство, обеспечивающее регистрацию спектра, а также измерение частот (длин волн) и интенсивностей его отдельных монохроматических составляющих. Конструктивно спектральные приборы различаются в зависимости от вида регистрируемого спектра, используемой области ЭМИ, физического состояния пробы. В спектроскопических методах ЭМИ, формирующее аналитический сигнал, может исходить либо от самой пробы, либо от специального источника излучения.   Анализаторы частоты Анализатор частоты – это узел спектрального прибора предназначенный для разложения потока электромагнитного излучения по частотам (длинам волн) или выделение из него узкого участка с определенной частотой. С точки зрения принципа действия анализаторы частоты подразделяют на оптические фильтры (светофильтры), анализаторы дисперсионного типа (призмы и дифракционные решетки) и анализаторы модуляционного типа (интерферометры). Источники внешнего излучения Источники внешнего излучения использ...